
DOI 10.1007/s100529900943
Eur. Phys. J. C 8, 697–709 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

Noncommutative Yang-Mills and noncommutative relativity:
a bridge over troubled water

L. Carminati1, B. Iochum1, T. Schücker1
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Abstract. Connes’ view at Yang-Mills theories is reviewed with special emphasis on the gauge invariant
scalar product. This landscape is shown to contain Chamseddine and Connes’ noncommutative extension
of general relativity restricted to flat spacetime, if the top mass is between 172 and 204 GeV. Then the
Higgs mass is between 188 and 201 GeV.

1 Introduction

Einstein was a passionate sailor. We speculate that this
was no accident. The subtle harmony between geometries
and forces becomes palpable to the sailor, he sees the cur-
vature of the sail and feels the force that it produces. Be-
fore Einstein, it was generally admitted that forces are
vector fields in an Euclidean space, R

3, the scalar prod-
uct being necessary to define work and energy. Einstein
generalized Euclidean to Minkowskian and Riemannian
geometry and we have two dreisätze or règles de trois.
Take Coulomb’s static law for the electric field with cou-
pling constant ε0 and add Minkowskian geometry with its
scale c, the speed of light: you obtain Maxwell’s theory.
In particular, there appears the magnetic field with fee-
ble coupling constant µ0 = 1/(c2ε0). Maxwell’s theory is
celebrated today as Abelian or should we say, commuta-
tive Yang-Mills theory. The second dreisatz starts from
Newton’s (static) universal law of gravitation, adds Rie-
mannian geometry to obtain general relativity with new
feeble, gravito-magnetic forces.

Connes proposes two more dreisätze. Take a certain
Yang-Mills theory with coupling constant g, coupled to
a Dirac spinor of mass m. Add noncommutative geome-
try [1] with an energy scale Λ: you obtain a Yang-Mills-
Higgs theory [2,3]. The symmetry breaking scalar becomes
a magnetic field of the Yang-Mills field and its mass and
self-coupling Λ are constrained in terms of g, m and Λ. His
second dreisatz starts from general relativity, adds non-
commutative geometry to obtain the Einstein-Hilbert ac-
tion plus the Yang-Mills-Higgs action [4,5]. Now the Yang-
Mills and the Higgs fields are magnetic fields of the grav-
itational field. Again there are constraints on λ, but they
are different.

Let us call noncommutative Yang-Mills the third and
noncommutative relativity the fourth dreisatz. Note how-
1 and Université de Provence

ever that – unlike with supersymmetry – you cannot take
any Yang-Mills theory and put ‘noncommutative’ in front
[6–8]. Note also that, behind noncommutative relativity,
there stands a genuine noncommutative extension of Ein-
stein’s principle of general relativity, the spectral principle.

One of the attractive features of noncommutative ge-
ometry is to unify gauge couplings with scalar self-couplings
and Yukawa couplings. These couplings will be at the cen-
ter of our discussion. They are related to the set of all
scalar products on a given space, which is a cone: in the
case of gauge invariant scalar products on the Lie algebra
of a Yang-Mills theory, the gauge couplings are positive
coordinates on this cone. For us, a noncommutative ge-
ometry is given by a spectral triple (A,H, D). The mo-
tivation for this noncommutative geometry comes from
Connes’ theorem [4] establishing a one-to-one correspon-
dence between commutative spectral triples and Rieman-
nian spin geometries [9]. A is an associative involution al-
gebra with unit, represented faithfully on a Hilbert space
H on which also the self-adjoint ‘Dirac’ operator D acts.
Physically, the Hilbert space is spanned by the fermions.
The Dirac operator serves several purposes: it defines the
kinetic term for fermions, it allows to construct differen-
tial forms – the Yang-Mills fields are 1-forms –, it is used
as ultra-violet regulator to define the scalar product and
above all, it defines the metric structure of space-time.

So, in this paper, playing with the scalar products and
the experimental accuracies of the gauge couplings and the
masses, we consider the noncommutative Yang-Mills and
noncommutative relativity theories as effective theories,
using the renormalization flow and show that they can be
related according to certain constraints on the Higgs and
top masses.
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2 Noncommutative relativity

The dynamical variable of gravity is the metric on space-
time. Einstein used the matrix gµν(x) of the metric g with
respect to a coordinate system xµ to parameterize the set
of all metrics on a fixed space-timeM . The coordinate sys-
tem being unphysical, Einstein required his field equations
for the metric to be covariant under coordinate transfor-
mations, the principle of general relativity. Elie Cartan
used tetrads, repères mobiles, to parameterize the set of
all metrics. This parameterization allows to generalize the
Dirac operator D to curved space-times and also refor-
mulates general relativity as a gauge theory under the
Lorentz group. Connes [4] goes one step further by relat-
ing the set of all metrics to the set of all Dirac operators.
The Einstein-Hilbert action, from this point of view, is
the Wodzicki residue of the second inverse power of the
Dirac operator [10] and is computed most conveniently
from the second coefficient of the heat kernel expansion
of the Dirac operator squared. The heat kernel expan-
sion [11] is an old friend [12] from quantum field theory in
curved space-time, from its formal relation to the one-loop
effective action

Seff = tr log(D2/Λ2), Λ a cutoff. (1)

This relation has been used by Sakharov [13] to induce
gravity from quantum fluctuations, leading however to a
negative Newton constant [14].

By generalizing the metric, the Dirac operator plays
a fundamental role in noncommutative geometry. To de-
scribe Yang-Mills theories, Connes considers the tensor
product of space-time and internal space in this new ge-
ometry, a natural point of view because the fermionic mass
matrix qualifies as Dirac operator on internal space. This
cheap tensor product unifies spacetime diffeomorphisms
with internal gauge transformations by extending Ein-
stein’s principle of general relativity to noncommutative
geometry. Remember that Einstein constructed general
relativity in two steps, by applying his principle first to
matter, then to the gravitational field itself. Connes fol-
lows this pattern and of course in his case, the spinors are
the matter.

To generalize the Dirac operator from flat to curved
space-time (locally), it is sufficient to write the Dirac oper-
ator first in flat space-time but with respect to noninertial
coordinates. A straightforward calculation produces the
covariant Dirac operator that contains the spin connection
ω. Although of vanishing curvature, ω contains already a
lot of physics, e.g. the centrifugal and Coriolis accelera-
tions in the coordinates of the rotating disk, the quantum
interference pattern of neutrons [15] in oscillating coor-
dinates. Then, the generalization to curved space is easy
where ω describes the (minimal) coupling of the spinor to
the gravitational field. In Einstein’s spirit, the covariant
Dirac operator is obtained by acting with the diffeomor-
phism group on the flat Dirac operator. But the diffeo-
morphism group is just the automorphism group of the
associative (and commutative) algebra C∞(M) represent-
ing space-time in noncommutative geometry. On the other

hand, the product of space-time and internal space is rep-
resented in this geometry by the tensor product of C∞(M)
with a matrix algebra. Its automorphism group is the
semi-direct product of the diffeomorphisms and unitaries
of the matrix algebra, the internal gauge transformations.
The diffeomorphisms are the outer, the gauge transfor-
mations are the inner automorphisms. And what do we
get when this entire automorphism group acts on the flat
Dirac operator? We get the total covariant Dirac opera-
tor containing the spin connection, the gauge connection
and the Higgs [3]. In other words, we get the minimal cou-
plings of the Dirac spinor to the gravitational and Yang-
Mills fields and its Yukawa couplings to the Higgs field. In
Connes’ words, the Higgs and Yang-Mills fields are non-
commutative fluctuations of the metric. (Abelian Yang-
Mills theories do not have such fluctuations.) Accordingly,
Connes generalizes Einstein’s principle of general relativ-
ity by postulating that only the intrinsic properties of the
covariant Dirac operator be relevant for physics. Here in-
trinsic means invariant under automorphisms. Thus, these
properties must concern the spectrum only. Spectral prin-
ciple is a convenient name for Connes’ generalization of
the principle of general relativity.

So far, we have only the kinematics of the metric (and
its fluctuations). To get its dynamics, Einstein developed
the full power of the principle of general relativity and de-
rived the Einstein-Hilbert action. In short this story: the
1/r2 in Newton’s universal law is the Green function of the
divergence, an operator of first order in the forces. We al-
ready know that the forces are encoded in the connection
ω. Riemannian geometry tells us that the connection is
obtained from first order derivatives of the metric. There-
fore Einstein looked for a second order differential equa-
tion for the metric. The covariance under change of coor-
dinates fixes this equation up to the cosmological constant
to be the Einstein equation. Chamseddine & Connes [5]
reedit this story using the spectral principle. It is stronger
than Einstein’s principle in the sense that for the metric
only, the Einstein-Hilbert action follows without the use of
Newton’s law. In addition, the spectral principle fixes the
action of the fluctuations to be the Yang-Mills action, the
covariant Klein-Gordon action and the symmetry break-
ing Higgs potential. Warning: following physicists’ habits,
we have confused diffeomorphisms and coordinate trans-
formations. Cleaning up this point leads to deep mathe-
matics [16] and probably a further unification of general
relativity and Yang-Mills theory: the reduction of the dif-
feomorphism group to an isometry group might take the
form of a spontaneous symmetry break down.

2.1 The stiff action

In even dimensions, the spectrum of the Dirac operator
is even and it is sufficient to consider the positive part
of the spectrum which in the Euclidean is conveniently
characterized by a distribution function

S = tr f(D2/Λ2), (2)
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Fig. 1. The evolution of the three coupling constants

where Λ is an energy cutoff and f : R+ → R+ is a pos-
itive, smooth function with finite, strictly positive first
‘momenta’,

f0 :=
∫ ∞

0
uf(u)du, f2 :=

∫ ∞

0
f(u)du, f4 := f(0).

(3)
If instead, f was the logarithm, this trace, after a proper
renormalization, would be Sakharov’s induced gravity ac-
tion. The positive function f is universal: the action S can
be computed asymptotically [17], that is up to terms of
the order of Λ−2, using the Lichnérowicz formula and the
heat kernel expansion. The action depends only on the
three momenta f0, f2, f4 and takes the form:

tr f(D2
t,cov/Λ

2) ≈
∫

M

[
− 1

16π
mP (Λ)2R+ ΛC(Λ)

+
1
2
g3(Λ)−2trF (3)∗

µν F (3)µν +
1
2
g2(Λ)−2trF (2)∗

µν F (2)µν

+
1
4
g1(Λ)−2F (1)∗

µν F (1)µν +
1
2
(Dµϕ)∗Dµϕ

+λ(Λ)|ϕ|4 − 1
2
µ(Λ)2|ϕ|2 − a(Λ)CµνρσC

µνρσ

+
1
12

|ϕ|2R
]

(det g..)1/2d4x. (4)

Here Dt,cov is the total, covariant Dirac operator of the
standard model of electroweak and strong interactions with
N = 3 generations of quarks and leptons. It follows that ϕ
is an isospin doublet. After a proper normalization of the
kinetic terms and a shift of the Higgs field by its vacuum
expectation value, |ϕ| = υ(Λ) = µ(Λ)/(2

√
λ(Λ)), we can

identify Newton’s constant G = ~cm−2
P , the cosmological

constant ΛC and the other coupling constants

mP (Λ)2 =
1
3π
f2

[
15N − 2

L2

Q

]
Λ2, (5)

L(Λ) := 3(m2
t +m2

c +m2
u +m2

b +m2
s +m2

d)
+m2

τ +m2
µ +m2

e, (6)

Q(Λ) := 3(m4
t +m4

c +m4
u +m4

b +m4
s +m4

d)
+m4

τ +m4
µ +m4

e, (7)

ΛC(Λ) =
1

4π2

[
15N f0 − f2

2

f4

L2

Q

]
Λ4, (8)

g3(Λ)−2 =
N

3π2 f4, (9)

g2(Λ)−2 =
N

3π2 f4, (10)

g1(Λ)−2 =
5
3
N

3π2 f4, (11)

λ(Λ)−1 =
1
π2 f4

L(Λ)2

Q(Λ)
(12)

=
3
π2 f4

(
1 + 2

mb(Λ)2

mt(Λ)2
+O

(
mτ (Λ)2

mt(Λ)2

))
,

µ(Λ)2 = 2
f2
f4
Λ2, (13)

a(Λ) =
3N
64π2 f4. (14)

From now on, we ignore the gravitational part because
we want to use the renormalization flow of the coupling
constants and also because we want to compare this theory
with the noncommutative Yang-Mills that, by the way,
automatically has a vanishing cosmological constant as
we shall see.

The constraints for the gauge couplings,

g3(Λ) = g2(Λ) and sin2 θw(Λ) =
g−2
2

g−2
1 + g−2

2
=

3
8

(9–11), are familiar from grand unification and force us to
assume the big desert. Consequently all numerical consid-
erations will be qualitative only. Indeed, the three gauge
couplings gi(Λ), once fixed at the Z-mass to their exper-
imental values sin2 θw(mZ) = 0.2315 ± 0.0005, see ap-
pendix, do not meet in a point anymore as was the case
in the SU(5) days. Today they define a triangle with

Λ = 1013–1017 GeV and
√

5
3g1(Λ), g2(Λ), g3(Λ) are in the

interval 0.52–0.56, Fig. 1. Details on the renormalization
group flow can be found in the appendix. For the noncom-
mutative constraints (9–11), this means that f4 cannot
take a precise value, 1

4π2 f4 = 0.80–0.94.
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2.2 The soft Einstein-Hilbert action

Of course, we may try to do better by introducing more pa-
rameters. Let z′, the ‘noncommutative coupling constant’,
be a positive operator on the fermionic Hilbert space that
commutes with the representation and the Dirac opera-
tor. For the standard model, this z′ contains four posi-
tive numbers x′, y′

1, y
′
2, y

′
N . We soften the action (4) to

tr[z′f(D2
t,cov/Λ

2)]. Then the constraints read [18]:

g3(Λ)−2 =
1

9π2 f4Nx
′, (15)

g2(Λ)−2 =
1

12π2 f4(Nx
′ + y′

1 + y′
2 + y′

N ), (16)

g1(Λ)−2 =
1

12π2 f4(
11
9 Nx

′ + 3(y′
1 + y′

2 + y′
N )), (17)

λ(Λ)−1 =
1
π2 f4

L(Λ)2

Q(Λ)
(18)

L(Λ) = x′(m2
t +m2

c +m2
u +m2

b +m2
s +m2

d)
+y′

3m
2
τ + y′

2m
2
µ + y′

1m
2
e, (19)

Q(Λ) = x′(m4
t +m4

c +m4
u +m4

b +m4
s +m4

d)
+y′

3m
4
τ + y′

2m
4
µ + y′

1m
4
e, (20)

µ(Λ)2 = 2
f2
f4
Λ2 (21)

If z′ = 190, then x′ = 3, y′
1 = y′

2 = y′
N = 1 and we recover

the stiff relations (11–13).

2.3 The dominating top approximation
and renormalization flow

The soft relations do not have the problem g3(Λ) = g2(Λ)
anymore, but we still cannot avoid the desert. In fact now

sin2 θw(Λ) =
Nx′ + (y′

1 + y′
2 + y′

N )
20
9 Nx

′ + 4(y′
1 + y′

2 + y′
N )
,

and the weak mixing angle is constrained for all Λ : 1
4 <

sin2 θw(Λ) < 9
20 . From now on, we neglect all fermion

masses with respect to the top mass. This approximation
induces relative errors of the order ofm2

b/m
2
t = 0.0006 and

it reduces the number of positive parameters from four,
x′, y′

1, y
′
2, y

′
N to two, x′ and y′ := y′

1 + y′
2 + y′

N . In the one
loop approximation, the evolution of the gauge couplings
(49–51) decouples from the other couplings and we can
solve the constraints (15–17) such that at the Z mass,
they reproduce precisely the experimental values. The last
non-empty constraint (18), λ(Λ) = N

9 g3(Λ)2 then fixes the
Higgs mass. With these approximations, we obtain:

– In the stiff case, x′ = y′ = 3, the uncertainty on the
cutoff is large:

Λ = (1013–1017) GeV,
1

12π2 f4x
′ =

1
12π2 f4y

′ = 0.80 − 0.94,

mH = 182 ± 10 ± 2 ± 7 GeV.


 stiff EH

The first error is from the uncertainty in the noncom-
mutative scale Λ, the second from the present experimen-
tal uncertainty in the gauge couplings, g3 = 1.218±0.026,
and the third from the uncertainty in the top mass, mt =
175 ± 6 GeV.

– In the soft case, the cutoff is sharp:

Λ = 0.96 · 1010 GeV,
1

12π2 f4x
′ = 0.578,

1
12π2 f4y

′ = 1.369,
mH = 190 ± 0 ± 1 ± 4 GeV.




soft EH

Let us anticipate that this comparison will work quanti-
tatively only for the stiff case. So if we spell out the soft
case here, then not because we believe that it makes sense
to fit numbers through the big desert with the indicated
precision. Our aim is to assess the stability of the Higgs
mass prediction and also to make the comparison with the
noncommutative Yang-Mills easier.

3 The noncommutative Yang-Mills action

After this quick review of the noncommutative version of
general relativity in flat space-time, we now turn to our
main concern, noncommutative Yang-Mills theory, Connes’
first dreisatz. The point will be that Connes’ second drei-
satz adds insight to the older one.

Noncommutative geometry does to space-time M , a
Riemannian manifold, what quantum mechanics did to
phase space. An uncertainty relation is introduced by al-
lowing the commutative algebra of functions C∞(M) to
become noncommutative. Let us call A this new algebra
that we still suppose real, associative and equipped with a
unit and an involution. On phase space, A was just the al-
gebra of observables. Now we want to define a distance on
this new space that has lost its points. Following Connes,
we need a faithful representation ρ of A via bounded op-
erators on a Hilbert space H, the space of fermions, and
a selfadjoint ‘Dirac’ operator D on H. Connes calls these
three ingredients a spectral triple, (A,H,D). They sat-
isfy axioms that are simply taken from the properties of
the commutative case, A = C∞(M), the Hilbert space H
is the space of ordinary, square integrable Dirac spinors.
An element f of A is a differentiable function on space-
time, f(x), and it acts on a spinor ψ(x) by multiplication
(ρ(f)ψ)(x) := f(x)ψ(x)′. D = ∂/ is the ordinary Dirac
operator. Only recently Connes has completed the list of
axioms [4] as to have a one-to-one correspondence between
commutative spectral triples and Riemannian spin mani-
folds. To this end, he needed two other old friends from
particle physics, a chirality operator χ and a real struc-
ture J . The chirality is a unitary operator of square one
that commutes with the representation. Therefore χ de-
composes the representation space into a left-handed piece
1−χ

2 H and a right-handed piece 1+χ
2 H. In the commuta-

tive case, of course χ = γ5. The real structure is an anti-
unitary operator that in the commutative case reduces to
the charge conjugation operator C. J is of square plus or
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minus one, depending on space-time dimension and signa-
ture. The dimensionality of M can be recovered from the
spectrum of the Dirac operator. Indeed for compact man-
ifolds, the spectrum is discrete and the ordered eigenval-
ues λn grow like n1/dim M . This motivates the name spec-
tral triple. Let us mention one more axiom. The Poincaré
duality on manifolds is promoted to an axiom in quite
an abstract form. We anticipate that, in the case of the
standard model, this Poincaré duality will prohibit right-
handed neutrinos [3].

3.1 Scalar products

To construct a Yang-Mills action
∫

trF ∗ F , we need four
ingredients: differential forms on spacetimeM , a Lie group
G, ‘the internal space’, a scalar product on the space of
differential forms ΩM and an invariant scalar product on
the Lie algebra g of the group G. The gauge field A is a
1-form with values in g, its field strength or curvature
is the 2-form F := dA + 1

2 [A,A] again with values in
g. To construct the action which is a real number, we
take the scalar products of the field strength with itself.
The first scalar product involves the space-time metric
g hidden in the Hodge star ∗, (ω, κ) =

∫
M
ω∗ ∗ κ, ω

and κ differential forms of same degree. In components,
e.g. for 2-forms ω = 1

2ωµνdxµdxν , we have (ω, κ) = 1
2∫

M
ω∗

µν κµ′ν′ gµµ′
gνν′

(det g..)1/2d4x. We suppose M Eu-

clidean, otherwise this scalar product would only be a
pseudo scalar product. The second scalar product is on
the Lie algebra. It only exists if the Lie group is compact.
E.g. for G = SU(n), the general invariant scalar product
is (a, b) = 2

g2
n
tr(a∗b), a, b ∈ su(n) and the coupling con-

stant gn is a positive number. In general, the space of all
scalar products is a cone whose coordinates are the cou-
pling constants.

To play the noncommutative Yang-Mills game, we need
a scalar product for differential forms. For our notations
and the construction of noncommutative differential forms
the reader is referred to [19]. In the noncommutative con-
text, the scalar product has another utility. It allows us to
interpret the noncommutative differential forms in ΩDA
not as classes but as concrete operators on the Hilbert
space H: degree by degree, we embed Ωp

D in π(ΩpA) as
orthogonal complement of J p. If H was finite dimensional,
we would naturally take as scalar product of two opera-
tors ω and κ, 〈ω, κ〉 = tr(ω∗κ). For infinite dimensional
Hilbert spaces, we have to regularize and we use the Dirac
operator to do so. Thanks to the asymptotic behavior of
its spectrum, tr[ω∗κ|D|−dim] only diverges logarithmically.
The Dixmier trace trDix gets rid of this divergence [20] and
we have a natural scalar product:

〈ω, κ〉 = Re trDix[ω∗κ|D|−dim], ω, κ ∈ π(ΩpA).

We denote by (·, ·) its restriction to ΩDA. In the commu-
tative case of a four dimensional manifold M , these scalar
products are independent of M :

〈ω, κ〉 =
1

32π2 Re
∫

M

tr4[ω∗κ]d4x, ω, κ ∈ π(ΩpA),

(ω, κ) =
1

8π2 Re
∫

M

ω∗ ∗ κ, ω, κ ∈ Ωp
DA,

where we view the quotient by the junk as subspace or-
thogonal to the junk. We anticipate that this scalar prod-
uct will also induce the one we need on the Lie algebra. In
order to get the coupling constants, we soften the scalar
products to:

〈ω, κ〉z = Re trDix[zω∗κ|D|−dim], ω, κ ∈ τ(ΩpA) (22)

(ω, κ)z = Re trDix[zω∗κ|D|−dim], ω, κ ∈ Ωp
DA. (23)

z is a positive operator on Hilbert space that commutes
with ρ, JρJ−1, D and χ. Whether or not z commutes with
J will be a difficult choice. In the commutative. case, we
have anyhow that z is proportional to the identity.

3.2 The standard model

3.2.1 The algebraic setting

The standard model has an internal space that does fit the
elaborate axioms of a spectral triple. The internal spectral
triple of the standard model is not far from being the sim-
plest, non-degenerate example. To make this more precise,
we note that the standard model viewed as an ordinary
Yang-Mills-Higgs theory has the following four unrelated
features:

(i) weak interactions break parity maximally,
(ii) weak interactions suffer spontaneous break down,
(iii) strong interactions do not break parity,
(iv) strong interactions do not suffer spontaneous break

down.

Flip just one of these features and the standard model is
outside the noncommutative axioms [7,21]. A more quan-
titative constraint concerns the Higgs representation, that
in Connes’ formulation is not chosen but computed. The
spectral triple of the standard model implies that the
Higgs scalar transforms as one doublet under weak isospin
entailing a unit ρ-factor,

ρ :=
m2

W

cos1(θw)m2
Z

= 1.

Experimentally we have today ρ = 1.0012 ± 0.0031.
The geometric version of the standard model is well

documented in the literature [1–3,22] and we just have to
fix our notations. We denote by H the algebra of quater-
nions, viewed as 2 × 2 matrices,(

x −y
y x

)
∈ H, x, y ∈ C.

We concentrate on the internal spectral triple. All its in-
gredients are finite dimensional,

A = H ⊕ C ⊕M3(C) 3 (a, b, c),

HL = (C2 ⊗ C
N ⊗ C

3) ⊕ (C2 ⊗ C
N ⊗ C),

HR = ((C ⊕ C) ⊗ C
N ⊗ C

3) ⊕ (C ⊗ C
N ⊗ C).
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In each summand of the Hilbert spaces, the first factor
denotes weak isospin doublets or singlets, the second N
generations, N = 3, and the third denotes color triplets
or singlets. Let us choose the following basis of H = C

90:(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

,

(
νe

e

)
L

,

(
νµ

µ

)
L

,

(
ντ

τ

)
L

;

uR, cR, tR,
dR, sR, bR,

eR, µR, τR;

(
u
d

)c

L

,

(
d
s

)c

L

,

(
t
b

)c

L

,

(
νe

e

)c

L

,

(
νµ

µ

)c

L

,

(
ντ

τ

)c

L

;

uc
R, ccR, tcR,
dc

R, sc
R, bcR,

ec
R, µ

c
R, τ

c
R.

The representation ρ acts on H by

ρ(a, b, c) :=
(
ρw(a, b) 0

0 ρs(b, c)

)

:=



ρwL(a) 0 0 0

0 ρwR(b) 0 0
0 0 ρsL(b, c) 0
0 0 0 ρsR(b, c)




with

ρwL(a) :=
(
a⊗ 1N ⊗ 13 0

0 a⊗ 1N

)
,

ρwR(b) :=
(
B ⊗ 1N ⊗ 13 0

0 b1N

)
, B :=

(
b 0
0 b

)
,

ρsL(b, c) :=
(

12 ⊗ 1N ⊗ c 0
0 b12 ⊗ 1N

)
,

ρsR(b, c) :=
(

12 ⊗ 1N ⊗ c 0
0 b1N

)
.

The chosen representation ρ will take into account weak
interactions ρw(a, b), a ∈ H, b ∈ C, and strong interac-
tions ρs(b, c), c ∈ M3(C), c for color. This choice discrim-
inates between leptons (color singlets) and quarks (color
triplets). The role of b ∈ C appearing in both weak in-
teractions ρw(a, b) and strong interactions ρs(b, c) is cru-
cial to make ρ(a, b, c) a representation of A and is crucial
for weak hypercharge computations. There is an apparent
asymmetry between particles and anti-particles, the for-
mer are subject to weak, the latter to strong interactions.
However, since particles and anti-particles are permuted
in the covariant Dirac operator by

J =
(

0 115N

115N 0

)
◦ c.c.,

the theory is invariant under charge conjugation. We de-
note the complex conjugation by c.c.. For completeness,
we record the chirality as matrix

χ =




−18N 0 0 0
0 17N 0 0
0 0 −18N 0
0 0 0 17N


 .

The third item in the spectral triple is the Dirac operator

D =




0 M 0 0
M∗ 0 0 0
0 0 0 0
0 0 0 0


 .

The fermionic mass matrix of the standard model is

M =

(

1 0
0 0

)
⊗Mu⊗13+

(
0 0
0 1

)
⊗Md ⊗ 13 0

0
(

0
1

)
⊗Me


,

with

Mu :=

(
mu 0 0
0 mc 0
0 0 mt

)
,

Md := CKM

(
md 0 0
0 ms 0
0 0 mb

)
,

Me :=

(
me 0 0
0 mµ 0
0 0 mτ

)
.

All indicated fermion masses are supposed positive and
different. The Cabibbo-Kobayashi-Maskawa matrix CKM

is supposed non-degenerate in the sense that there is no
simultaneous mass and weak interaction eigenstate. Note
that the strong interactions are vector-like and ρs com-
mutes with D.

Let us compute the noncommutative coupling constant
z. We recall that z is a positive operator on H that com-
mutes with the representation ρ, with its opposite JρJ−1,
with the chirality χ, and with the Dirac operator D. It fol-
lows that z involves 2(1+N) = 8 strictly positive numbers
x, y1, y2, yN , x̃, ỹ1, ỹ2, ỹN ,

z :=
(
zw 0
0 zs

)
,

zw :=



x/3 12⊗1N ⊗ 13 0 0 0

0 12⊗y 0 0
0 0 x/3 12⊗1N ⊗13 0
0 0 0 y


 ,

zs :=



x̃/3 12⊗1N ⊗ 13 0 0 0

0 12⊗ỹ 0 0
0 0 x̃/3 12⊗1N ⊗13 0
0 0 0 ỹ


 ,

y :=

(
y1 0 0
0 y2 0
0 0 yN

)
, ỹ :=

(
ỹ1 0 0
0 ỹ2 0
0 0 ỹN

)
.

The interpretation of these numbers is straightforward.
The three yj poise the weak interactions with the three
lepton generations. The yj enter independently because
the Higgs scalar couples differently to the three leptons
and in noncommutative geometry the Higgs is part of the
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gauge interactions. The three ỹj poise the ‘strong’ interac-
tions with the three lepton generations. They do not drop
out because of the b in ρs. However, they will only enter as
sum: strong interactions are unbroken and do not generate
a Higgs. We will denote ỹ := ỹ1+ ỹ2+ ỹN and there should
be no risk of confusion. x and x̃ poise weak and strong
interactions with quarks. There is only one number per
interaction because of the Cabibbo-Kobayashi-Maskawa
mixing that we suppose non-degenerate.

3.2.2 The choice of a scalar product

We recall the internal scalar product 〈ω, κ〉z = Re tr [zω∗κ],
ω, κ ∈ π(ΩA). At this point comes the new lesson from
noncommutative relativity. It tells us that we have forgot-
ten an entire cone of other scalar products,

〈ω, κ〉z′ := Re tr [z′(ω + JωJ−1)∗(κ+ JκJ−1)]

with additional 1+N strictly positive constants x′, y′
1, y

′
2,

y′
N ,

z′ :=
(
z′
w 0
0 z′

s

)
,

z′
w = Z ′

s :=
1
2


x′/3 12⊗1N ⊗ 13 0 0 0

0 12⊗y′ 0 0
0 0 x′/3 12⊗1N ⊗13 0
0 0 0 y′


.

Indeed, in noncommutative relativity, the scalar product is
not chosen, it is induced from the heat kernel calculation.
The Dirac operator Dt,cov = Dt + πt(At) + Jtπt(At)J−1

t

leads to the scalar product with z′. We could obtain the
one with z from another Dirac operator, Dt,cov = Dt +
πt(At), but this latter is forbidden by the spectral princi-
ple: for a unitary u ∈ At, the inner automorphim

αu : ρt(a) ∈ ρt(At) 7→ ρt(uau∗) ∈ ρt(At)

induces a unitary operator U = ρt(u)Jtρt(u)J−1
t on Ht

satisfying

Uρt(a)U∗ = αu(ρt(a)), and

UDtU
∗ = Dt + πt(At) + Jtπt(At)J−1

t ,

with πt(At) = ρt(u)[Dt, ρt(u)∗],

so Dt and Dt,cov have the same spectrum and the fluctua-
tions of the metric are of the form πt(At) + Jtπt(At)J−1

t .
Restricted to the Lie algebra g, we have a subtle nu-

ance between the two invariant scalar products concern-
ing the two u(1) factors. For z′ in the center R

+190, we
have sin2 θw = 3/8, while for z in the center we will get
sin2 θw = 12/29. Note also that z′ commutes with the real
structure J , while z does not. If in doubt, stay out: we will
use both cones simultaneously. Figure 2 is an artist’s view

Fig. 2. The allowed cones of possible scalar products

on the role of the possible scalar products in noncommu-
tative Yang-Mills theory:

〈ω, κ〉z,z′ := Re tr [zω∗κ]

+ Re tr [z′(ω + JωJ−1)∗(κ+ JκJ−1)],
ω, κ ∈ π(ΩA). (24)

3.2.3 The gauge couplings computation

We are ready to turn the crank. A long, but straight down
the line computation leads to the physical couplings in
terms of the fermionic mass matrix M and the noncom-
mutative couplings z, z′:

Here are a few purely algebraic intermediate steps:

Ω1
DA=


i



0 ρwL(h)M 0 0
M∗ρwL(h̃∗) 0 0 0

0 0 0 0
0 0 0 0


, h, h̃ ∈ H


.

The Higgs being an anti-Hermitian 1-form

H = i




0 ρwL(h)M 0 0
M∗ρL(h∗) 0 0 0

0 0 0 0
0 0 0 0


 ,

h =
(
h1 −h2
h2 −h1

)
∈ H

is parameterized by one complex doublet(
h1
h2

)
, h1, h2 ∈ C.

The internal junk in degree two turns out to be

J 2 =


i


j ⊗∆ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


 , j ∈ H



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[N(x + x′) + y + y′]α+ y′β+ Nx′γ =
1
2
(x + x′)

2y′α+ [2N(x + x′) + y + 3ỹ + 6y′]β+ 2Nx′γ = (x + x′)

Nx′α+ Nx′β+ 2N(x̃ + x′)γ = x′.

(25)

with

∆ :=
1
2

(
(MuM

∗
u −MdM

∗
d ) ⊗ 13 0

0 −MeM
∗
e

)
.

The homogeneous scalar variable is:

Φ := HiD =: i




0 ρwL(φ)M 0 0
M∗ρwL(φ∗) 0 0 0

0 0 0 0
0 0 0 0


 ,

φ =
(
ϕ1 −ϕ2
ϕ2 ϕ1

)
∈ H,

and with ϕ := (ϕ1, ϕ2)T , the internal field strength is:

C := δH +H2 = (1 − |ϕ|2)




12 ⊗Σ 0 0 0
0 M∗M 0 0
0 0 0 0
0 0 0 0


 ,

Σ :=
1
2

(
(MuM

∗
u +MdM

∗
d ) ⊗ 13 0

0 MeM
∗
e

)
.

Now, the chosen scalar product (24) appears in the
long computation of αC [19]. In the standard model, αC
has form

αC = (1 − |ϕ|2)m2
tρ(α12, β, γ13).

To compute the real numbers α, β, γ, we neglect all ferm-
ion masses with respect to the top mass. This approx-
imation is again good to m2

b/m
2
t = 0.0006 [23]. In this

approximation, the number of parameters reduces again,
we are left with six parameters: x, x̃, y := y1 + y2 + yN , x

′,
and y′ := y′

1 + y′
2 + y′

N , ỹ, and α, β, γ are determined by
three linear equations (see (25) on top of the page).

The Higgs Lagrangian has the form:

2
8π2 (x+ x′)m2

t (Dµϕ)∗Dµϕ+
1

8π2 km
4
t (1 − |ϕ|2)2

=:
1
2
(Dµϕph)∗Dµϕph + λ|ϕph|4 − 1

2
µ2|ϕph|2

+constant,

with

k :=
3
2
(x+ x′) − 2Nx(α2 + β2) − y(2α2 + β2) − 4Nx̃γ2

−3ỹβ2 − 2Nx′((α+ γ)2 + (β + γ)2)
−y′(2(α+ β)2 + 4β2).

Therefore

λ−1 =
2
π2

(x+ x′)2

k
, (26)

µ2 =
k

x+ x′m
2
t . (27)

Before computing the gauge couplings, we have to get rid
of the unwanted u(1) in g. This is done by imposing the
unimodularity condition,

tr[P (ρ(a, b, c) + Jρ(a, b, c)J−1)] = 0,

where P is the projection on HL ⊕HR, the space of parti-
cles. Note that this condition is equivalent to the condition
of vanishing gauge anomalies [22]. Normalizing properly
the gauge fields, we compute their couplings:

g−2
3 =

1
6π2N(x̃+ x′), (28)

g−2
2 =

1
8π2 [N(x+ x′) + y + y′], (29)

g−2
1 =

1
8π2

[
Nx+

2
9
Nx̃+

11
9
Nx′

+
1
2
y +

3
2
ỹ + 3y′

]
. (30)

3.3 Results

As for noncommutative relativity, we interpret the five
constraints (26–30) in terms of running quantities at the
noncommutative scale Λ. Since the flow of µ2 is renor-
malization scheme dependent, we trade the running top
mass for its Yukawa coupling, mt = gtv, mW = 1

2g2v,
mH = 2

√
2λ v, v = 1

2
µ√
λ
,

g3(Λ)−2 =
1

6π2N(x̃+ x′), (31)

g2(Λ)−2 =
1

8π2 [N(x̃+ x′) + y + y′], (32)

g1(Λ)−2 =
1

8π2

[
Nx+

2
9
Nx̃+

11
9
Nx′

+
1
2
y +

3
2
ỹ + 3y′

]
, (33)

λ(Λ)−1 =
2
π2

(x+ x′)2

k
, (34)

gt(Λ)−2 =
1

2π2 (x+ x′). (35)

These Yang-Mills constraints are to be compared to the
soft Einstein-Hilbert constraints

g3(Λ)−2 =
1

9π2 f4Nx
′, (36)

g2(Λ)−2 =
1

12π2 f4(Nx
′ + y′), (37)

g1(Λ)−2 =
1

12π2 f4

(
11
9
Nx′ + 3y′

)
, (38)

λ(Λ)−1 =
1
π2 f4x

′. (39)
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The noncommutative Yang-Mills action has four additional
parameters, x, x̃, y, ỹ, but one additional constraint, on the
top mass.

These results can be detailed at different levels, playing
with z and z′.

– The original Connes-Lott model [1,2] used zw =: z1,
zs =: z2, z′ = 0 and Λ = mZ , i.e. tree level. It worked
with a bimodule and had two spurious U(1) factors. Con-
sequently its linear system (25) is slightly different, put
ỹ = 0, and the Higgs mass comes out [24]:

m2
H = 3

(mt/mW )4 + 2(mt/mW )2 − 1
(mt/mW )2 + 3

m2
W ,

mH = 278 GeV,

for mt = 175 GeV.
– With the real structure [3], we are inflicted with only

one spurious U(1). If we put z′ = 0, then we can solve the
system (25) even without the approximation of a domi-
nating top mass:

α =
1
2

x

Nx+ y
, β =

1
2

x

Nx+ 1
2y + 3

2 ỹ
, γ = 0,

and at tree level [23]:

m2
H = 3m2

t −
(

1 +
g−2
2

g−2
1 − 1

6g
−2
3

)
m2

W ,

mH = 289 GeV

for mt = 175 GeV. In this case, we also have precise
results with all fermion masses and mixings. The τ mass
renders the Higgs mass fuzzy with a relative uncertainty
of the order of m2

τ/m
2
t , that is some tens of MeV, as y3

ranges from 0 to its maximal value.
– Our general analysis including z, z′ and Λ starts with

the inequality,

g2(Λ) <
2√
N
gt(Λ) (40)

coming from equations (32) and (35). Identifying the pole
masses of the W and top with their running masses at
mZ , this inequality sets an upper bound Λmax on the non-
commutative scale shown in Fig. 3. This bound is rather
sensitive to variations in the gauge couplings. The non-
commutative Einstein-Hilbert action needs a scale Λ of at
least 1010 GeV forcing a high top mass or slightly different
gauge couplings as suggested anyhow by the stiff action.

In the presence of z, the top mass is a free parameter
and z′ is just a perturbation rendering the Higgs mass
fuzzy. This comes from the fact that x′ and y′ are bounded
from above,

x′
max = min{2π2g3(Λ)−2, 2π2gt(Λ)−2}
y′
max = min{8π2g2(Λ)−2 − 6π2gt(Λ)−2,

16π2

5
g1(Λ)−2

−8π2

5
g2(Λ)−2 − 8π2

15
g3(Λ)−2 − 6π2

5
gt(Λ)−2}

Fig. 3. The cutoff Λmax as function of the top mass

and that the Higgs mass decreases with x′, increases with
y′. With mt = 175 ± 6 GeV, this fuzziness is:

mH = 289+2
−5 GeV for Λ = mZ ,

mH = 195+.0
−.5 GeV for Λ = Λmax = 2 · 105 GeV. (41)

This narrow interval accessible to the Higgs mass comes
of course from a narrow interval accessible to the scalar
selfcoupling,

λ(Λ) = (0.329 − 0.345)g2
3 for Λ = mZ ,

λ(Λ) = (0.313 − 0.317)g2
3 for Λ = Λmax = 2 · 105 GeV.

Finally, we have one other constraint in presence of z and
z′,

1
15
g3(Λ)−2 +

1
5
g2(Λ)−2 +

3
20
gt(Λ)−2 <

2
5
g1(Λ)−2.

We already had this same inequality [23] with z′ = 0. For
Λ = mZ it means sin2 θw < 0.54 and remains harmless for
higher Λ.

– To make contact with the noncommutative Einstein-
Hilbert action, we put z = 0. Now the constraints on the
gauge coupling are identical to those from the Einstein-
Hilbert action and force upon us the big desert. In addi-
tion, the top mass is constrained,

g2
t =

N

3
g2
3 .

To compute the Higgs mass, we solve the system (25),
which is simple, due to the approximation of a dominating
top mass:

α = 0, β = 0, γ =
1

2N
.

From (34) we have

λ(Λ) =
3N − 2

24
g2
3 =

7
24
g2
3 . (42)

This constraint is to be compared to the one from the
Einstein-Hilbert action (39), λ(Λ) = N

9 g
2
3 . The two scalar
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selfcouplings would coincide precisely if we had N = 6
generations!

In terms of masses, we get in the soft case, Λ = 0.96 ·
1010 GeV:

mt = 214 ± 0 ± 4 GeV, (43)
mH = 227 ± 0 ± 4 GeV soft YM, (44)

and in the stiff case, z′ ∈ ρ(center):

mt = 188 ± 14 ± 2 ± 0 GeV, (45)
mH = 198 ± 8 ± 2 ± 0 GeV stiff YM. (46)

For comparison, we recall the values from the Einstein-
Hilbert action:

mH = 190 ± 0 ± 1 ± 4 GeV soft EH, (47)
mH = 182 ± 10 ± 2 ± 7 GeV stiff EH. (48)

The first error is from the uncertainty in the noncommu-
tative scale, Λ = (1013–1017) GeV, the second from the
present experimental uncertainty in the gauge couplings,
g3 = 1.218 ± 0.026, and the third is from the uncertainty
in the top mass, if needed as input, mt = 175 ± 6 GeV.

We give up the soft noncommutative Yang-Mills model
since its top mass (43) must be bigger than 197 GeV, Fig.
3. It is too large and we retain only the stiff model. The
stiff values for the top mass from Yang-Mills (45) seem
in contradiction with the asymptotic value 197 GeV from
Fig. 3. They are not, the asymptotic value is sensitive
to changes in the gauge couplings which in the stiff case
deviate slightly from the experimental values. The error
of ±14 GeV from the uncertainty in Λ tells us how close
we are to the rim. Concerning the Higgs mass, the two
allowed intervals, (48) from relativity and (46) from Yang-
Mills have a non-empty intersection,

mH = 188 − 201 GeV.

This is the second pillar of the bridge we propose. All
values of top and Higgs masses (43–48) are compatible
with perturbation and stability in the energy range, m−
Z < E < Λ, Fig. 6.

4 Conclusions

There is an old hand waving argument combining Heisen-
berg’s uncertainty relation with the Schwarzschild radius
which implies that the noncommutative scale Λ must be
smaller than the Planck mass, 1019 GeV. This is compat-
ible with the numbers above and we have the following
picture. Grand unification proposed the big desert, from
the Higgs mass all the way up to Λ nothing new happens,
no new particle, not even a break down of perturbation
theory [25]. At Λ, a modest change of physics happens.
The standard SU(3)×SU(2)×U(1) is unified into SU(5).
This adds a few more Yang-Mills and Higgs bosons to
our boring world. These ‘lepto-quarks’ cause proton de-
cay and make our world too exciting to be stable. Non-
commutative geometry also has the big desert, but on its

other side a revolution in form of a truly noncommutative
space-time of which the cheap tensor product between dif-
ferential geometry and the internal space of the standard
model is only a low energy mirage. We expect that cross-
ing the scale Λ will induce ‘noncommutative’ threshold
effects that are responsible for the small mismatch in the
gauge couplings triangle in the E − g plane (Fig. 1) and
for the small mismatch in the scalar selfcoupling and in
the Yukawa coupling of the top. We also hope that the
new geometry beyond Λ will solve our conceptual prob-
lems with quantum field theory, in particular in presence
of gravity. But this is still troubled water.

The dream to connect general relativity and Yang-
Mills theories is as old as Einstein. Elegant attempts have
been proposed, Kaluza-Klein theories, Weyl’s gravity, Poin-
caré gravity, Sakharov’s induced gravity. . . Noncommuta-
tive geometry proposes another bridge, that stands so far
thanks to a subtle conspiration between the gauge cou-
plings, the top mass and the number of generations. But
it will fall soon if the Higgs mass does not cooperate.

5 Appendix

– Gauge couplings: The SU(2) × U(1) × SU(3) gauge
couplings g3, g1, g2 are normalized by the scalar product

〈ρ(a, b, c), ρ(a, b, c)〉z,z′ =
1
2
g−2
1 bb+ g−2

2 tr(a∗a) + g−2
3 tr(c∗c),

for (a, b, c) ∈ su(2) ⊕ u(1) ⊕ su(3).

– Higgs field: The kinetic term of the scalar field φ is
normalized to 1

2 in the Lagrangian which is written as

L =
1
2
∂µφ

∗∂µφ+ λ(φ∗φ)2 − µ2

2
(φ∗φ) + . . .

Moreover, if v is its expectation value, the relations be-
tween the gauge couplings g., the self-coupling λ and the
W , top, Higgs running masses are defined by

v = 2g−2
2 mW ,

λ =
g2
2

32
m2

H

m2
W

,

µ =
1√
2
mH ,

gt = v−1mt.

All these relations depend on the energy.
– Renormalization procedure: We adopt the mass in-
dependent MS renormalization scheme in the approxima-
tion where all fermions masses are neglected but the top
quark mass mt. As running parameter associated to the
energy E, we choose r = log10

(
E

mZ

)
. For the renormal-

ization flow, the one-loop evolution equations of the above
variables are the following first order differential equations

C g′
1(r) =

41
6
g1(r)3, (49)
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Fig. 4. The top coupling

Fig. 5. The Higgs selfcoupling for mH(mZ) =
120 (lower graph), 160 and 180 GeV (upper
graph) for mt(mZ) = 175 GeV

Fig. 6. Two allowed domains for the Higgs mass
with Λ = 1010 GeV (thick lines and Λ = 1019

GeV (thin lines): slices between the upper curves
(λ < 1) and the lower curves (λ > 0), with points
drawn at mH(mZ) = 120, 160, 180 GeV, for
mt(mZ) = 175 GeV

C g′
2(r) = −19

6
g2(r)3, (50)

C g′
3(r) = −7g3(r)3, (51)

C g′
t(r) = gt(r)

(
−17

12
g1(r)2 − 9

4
g2(r)2 − 8g3(r)2

+ 9gt(r)2
)

(52)

C λ′(r) = λ(r)(−3g1(r)2 − 9g2(r)2 + 24gt(r)2 + 96λ(r))

+
3
32
g1(r)4 +

9
32
g2(r)4 − 6gt(r)4

+
3
16
g1(r)2g2(r)2, (53)

C µ′(r) = µ(r)
(

−3
4
g1(r)2 − 9

4
g2(r)2

+ 6gt(r)2 + 24λ(r)
)
, (54)
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with C = 16π2

ln(19) .

– Initial conditions: At r = 0, that is, at mZ = 91.187
GeV, we have [27]

g1(0) = 0.3575 ± 0.0001, (55)
g2(0) = 0.6507 ± 0.0007, (56)
g3(0) = 1.218 ± 0.0026, (57)
mt(0) = 175 ± 6 GeV, (58)
mW (0) = 80.33 ± 0.15 GeV. (59)

So we get for the central values

v(0) = 246.903 GeV,
gt(0) = 0.0040.

The last Eq. (54) decouples from the others: note that
g1, g2, g3, gt, λ have no dimension while µ is a mass. At
this point, it is important to quote that in our renormal-
ization scheme) quadratic divergences do not appear, only
the logarithmic ones are retained. In order to avoid renor-
malization scheme ambiguities in the evolution of µ2, we
neglect the threshold effects of the top and Higgs masses
and we identify their pole masses mp = m(mp) with their
running masses at the Z mass m(mZ). For these reasons,
we will not use (54).

– Figures: All quantities not explicitely mentioned in a
figure are put to their experimental values.

In Fig. 1, the intersections of the three coupling con-
stants determine a triangle. Figure 4 shows the evolution
of gt. Clearly, the same evolution for the Higgs selfcou-
pling λ strongly depends in Fig. 5 of the Higgs initial
value mass. This is due to the fact that the allowed do-
main for the Higgs mass in term of the top mass (Fig. 6)
is the slice between the top curve which describes the per-
turbative (or triviality) condition (λ < 1) and the down
curve which describes the instability condition (λ > 0) for
energies between the Z mass and the Planck mass. Nat-
urally, this slice depends on the choice of Λ. The three
points in Fig. 6 are the initial conditions of the curves of
Fig. 5. The upper point corresponds to the upper curve
which is non perturbative and the lower point corresponds
to the lower curve which is unstable. Since the experimen-
tal top mass (58) localizes the Higgs mass in a very narrow
region, this figure is particularly significant if we believe
in perturbation and stability throughout the big desert.
It is important to note here that these two assumptions
traditionally imposed by hand in a classical Yang-Mills-
Higgs theory, are automatically satisfied in both noncom-
mutative dreisätze: once the initial conditions (55–59) are
admitted, the selfcoupling λ always stays in the stable and
perturbative regime for energies between mZ and Λ. Note
for instance that, in the soft case, Λ = 0.96 · 1010 GeV is
small compared to the Planck mass. Figure 3 shows again
that the noncommutative cutoff Λmax is very sensitive to
a top mass around 197 GeV.
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